Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240622.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240622-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240622.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240622.tar.gz
Algorithm Hash digest
SHA256 95625654290981fab54064e012a7201bdf90822438f0a44fc64dcfb7c2033ff6
MD5 2e09084d326104fd8d49ccb7e40d67de
BLAKE2b-256 be3ca2b269799aaefa770aa69dc142c6af3247a5373275ff8d7dd94e88471d09

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240622-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240622-py3-none-any.whl
Algorithm Hash digest
SHA256 9b8d7c7ef130edc10a0ebf8b9b4f423371ffbb918800405e6b5736a9e60768e0
MD5 342d406206e15143904afd624b395b0a
BLAKE2b-256 0c40b607d2dd1f055b1246d27ca938abd1706f86cf64f2c8ed445e1d119ebb6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page