Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240623.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240623-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240623.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240623.tar.gz
Algorithm Hash digest
SHA256 525d0153c778040288473f33b4fbf0e118c2020f46598a26ceb0a9ad8557ebcd
MD5 a9b0cfbd035e845cbe91653ac5e1432c
BLAKE2b-256 2ee501fb99c7a7090c1db2d811490bbaac39a136bae65da9c0cdfb14287bf18b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240623-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240623-py3-none-any.whl
Algorithm Hash digest
SHA256 bc4b9a06c0569cd00def98ef221ce3aa1346d1b821c6bc408ebd18a5108cae6d
MD5 e4dd5766c96833139335904f0f61964f
BLAKE2b-256 87700e51adef1429c06fe57948624fdb93aceb6570c7a2457c6bc6959923c4f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page