Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240624.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240624-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240624.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240624.tar.gz
Algorithm Hash digest
SHA256 655f0f1f2fec0821f702881dd5d3628448e36070156a2a65099575df9c51d0d3
MD5 262c202d65f601be52504bfa55df863d
BLAKE2b-256 105e0e7dfe2970b66572a9178ae55cd68b9c247ae90b42aff11ef58920778462

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240624-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240624-py3-none-any.whl
Algorithm Hash digest
SHA256 6a934c8f7a684580fcbce3ff36ad7ef18aba704b074ac8751b09b9a73e2707e8
MD5 8ce47f4ae2a4c0e482371401c7de3ee4
BLAKE2b-256 f294317f170d107fee68eef5ec93cbb2e7d747c3b4708001216f37957c1e75a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page