Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240625.tar.gz (65.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240625-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240625.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240625.tar.gz
Algorithm Hash digest
SHA256 ceeaccbe2f2aee18cb5341d186eb9afe3f477cf3778c736ea71f01db450d5ee6
MD5 9bae53c38b57ca66e1c48cbe1e3d694e
BLAKE2b-256 80bf762991fbedf5eff0004c0030d3faa52332a76f5a677f7b331cf90c235e7e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240625-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240625-py3-none-any.whl
Algorithm Hash digest
SHA256 6a1127d8a633b2b854855b94df5736745bb81ab389b831ff5b34aba440c40d21
MD5 4d62ab5e4c646c2ae0cb34935a5ed996
BLAKE2b-256 5c29aba6e4e70db49df4438a5359c0b369c9678b89a2af22215b7b618e165bb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page