Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240626.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240626-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240626.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240626.tar.gz
Algorithm Hash digest
SHA256 bea99c23b3e5a3d7924efceeeae8a15749b020cc19377aa8189c09c9aaf057e5
MD5 54f77b511dd1c70c22dd837e8a907df1
BLAKE2b-256 d59e5598b643babdc1227640dc5d35d63f4ddf2100517dc03885b16de7e326a5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240626-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240626-py3-none-any.whl
Algorithm Hash digest
SHA256 304fb4790600432c4bfc0bdb4121ba86b6fb3febde7ad33acc148b2df1693778
MD5 124e0a67d162ac15ce3f53de7fa4124c
BLAKE2b-256 5da792377d744b6774172aa3e8d9b3e70c1e7af674a0f2aada5c7ff20d267a55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page