Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240627.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240627-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240627.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240627.tar.gz
Algorithm Hash digest
SHA256 cb63eb15da6b11876da03b1e62a7ab5e8f2138a2410c40fd20476196c3e6a5e4
MD5 1d201667da17a8d0121dcd502f63cd3c
BLAKE2b-256 d8a8d99106b514e26c42c8228ca48a1aafb00c60a5596ccf157c746f84ad4af2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240627-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240627-py3-none-any.whl
Algorithm Hash digest
SHA256 7417a3202019fc8367e03cc73693a816b5516a2479a4808f082eee5eed1a89c5
MD5 db89170f7e5b4467b9e7ab28b657de16
BLAKE2b-256 bfc8d992b3febfd0a22e8258a6a71943b1cb8812eebad7770b13ea81540e9e3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page