Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240628.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240628-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240628.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240628.tar.gz
Algorithm Hash digest
SHA256 ae19a2fe10b5f5e37e48a7f9288131b0b92928410573c4e4ebc1bb27018943b3
MD5 d93579c5a515cab8032245ccdadec514
BLAKE2b-256 40ad7652c83b6a67d9d58cb70e6cdcc4231c311c9745efc798967a2298ff0be5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240628-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240628-py3-none-any.whl
Algorithm Hash digest
SHA256 a2e164c1139bc9b6e6b6362de7c6e4c0476d301dee892aa1a4ec8eadd4c4d83e
MD5 1dc194c25c61c6fdf72296ca54ac118d
BLAKE2b-256 bf781f69fc4fd7dfbcea36b76fe7628ce5e79c4b6f70ebe21bd69ed88d0c0540

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page