Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240629.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240629-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240629.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240629.tar.gz
Algorithm Hash digest
SHA256 e5c5d91ff57285738006828ef9c8a50d98bdd40ef048c656c533a45c8ad26d90
MD5 07ecd23919aec100520e8f8f187a1884
BLAKE2b-256 4a37698baab07058ef0907c62446f1db4896925493a9694953942ebe3ead225c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240629-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240629-py3-none-any.whl
Algorithm Hash digest
SHA256 27524db1dd62b2296c1a6dd61fc3954e1af503cd5831040e5cf5bba5dc6d5ee7
MD5 44e727899391dfd9e881ff3444e4fddd
BLAKE2b-256 36b97be0f671b0db359c8542156506037f78035058a65dd2bf70ad6fe7370b5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page