Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240630.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240630-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240630.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240630.tar.gz
Algorithm Hash digest
SHA256 b6436ffb2a7792d54f56a140c5a45faf7eecafe335a77b3fff7bdc3a7f3f8d72
MD5 fa7fd23b8d4e5557fe7b625cd01b16d4
BLAKE2b-256 692c71d2f507e1892b60fb51cc23e1c3b2147cb18261b69ae40cdaec87b457cd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240630-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240630-py3-none-any.whl
Algorithm Hash digest
SHA256 c4b3be03dde67cc2acd966141ad6cc8e4a0869695ca836d292326703bc5db64a
MD5 a79984cdccd99d82330d13132667cc33
BLAKE2b-256 30b61bb66a990a76bdfca4c237f64e715bc0941ef264f4b1c66c5ae5621c7a1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page