Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240701.tar.gz (65.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240701-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240701.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240701.tar.gz
Algorithm Hash digest
SHA256 e801d5a5b61cb0c89d65b41c5bc928134df4bcf0f0db2a45d2be75f7efcb44e8
MD5 68f7a14e0ed1a0d41032ce956d93b9cd
BLAKE2b-256 ae7dce7899ac5885f6515c0299f5ecd3b46dd94fbffdcbcb6d1efd3c21419fc5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240701-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240701-py3-none-any.whl
Algorithm Hash digest
SHA256 61ce3a8652b2eec616cef2059dbc50f013eef97546cf492f76074a603a5c8ec2
MD5 de2d990d2f97957d1fc7ea73b5cb606b
BLAKE2b-256 e014d81cc7736b454cb77d0da5e842b3eba833fcd994e6b56f995f64c6338957

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page