Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240702.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240702-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240702.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240702.tar.gz
Algorithm Hash digest
SHA256 c0d70a7103c818a9c75e949f12219ef14f278989116f2ffb3803f9f816fac0f9
MD5 d38f06e82946345ee3bc39a6390b8e86
BLAKE2b-256 15ca70071a491fe9025ad4db0f6231bff25511af42ae4e194b257285899fbd25

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240702-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240702-py3-none-any.whl
Algorithm Hash digest
SHA256 c76cf07232af9cc7d788a876f57e2609feb2c618fb274b872b79b39bd1b08adf
MD5 ecf7bdb40ca4306803bd2de235311bf8
BLAKE2b-256 07bfef68e509ae37fdd6e4f7d16fcea1f1c4376caa564ba298370aeb17e40e25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page