Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240703.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240703-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240703.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240703.tar.gz
Algorithm Hash digest
SHA256 8cf7aae4cc11e5a6d9250d4ff146b7a0398b556b687f87d53bf52a7eddf59f23
MD5 cdc557e75ecb7438c321c6c64e2f4fe9
BLAKE2b-256 2962205eda3b43c895edb65a12c784091901e1b97b6425d91feabc0a39ed6ce8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240703-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240703-py3-none-any.whl
Algorithm Hash digest
SHA256 a596c90d1d335f643c2537ab8c212219fb29c2effe5e871a26944dbe924183b1
MD5 0f44a97211311bc847e6f89c451c2d01
BLAKE2b-256 771ca1daed2ca9fa701debb969ff5a545aaff04a72986ef966ae1146d943661e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page