Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240704.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240704-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240704.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240704.tar.gz
Algorithm Hash digest
SHA256 7a6658d5881dece15aa50ccf43fab65428033826aa6a4c49af6a9982400d8bb2
MD5 e5ceb961a148fac74b07ec2ecacd8dd5
BLAKE2b-256 e3c58b363f8e49f7a3dd51c9017a145f0b9ec43e301917a14a8ae16573fbe8b7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240704-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240704-py3-none-any.whl
Algorithm Hash digest
SHA256 443c35e70419c194e2eb85370fce5297c12ab445151ab932fedfde808f7956c1
MD5 df0d7aa4af03a3cf44517b40b4e34da1
BLAKE2b-256 e276a3662d213544cceabaf50c454a882ef3055c3c5677341c7ffdd2fc5740cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page