Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240705.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240705-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240705.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240705.tar.gz
Algorithm Hash digest
SHA256 e292c38d9445e3e706fa6724b449ab771a4142a8b7cc6dbdc159dedef2e23080
MD5 e7fced26cdb0c2d101562a9e5d6165c0
BLAKE2b-256 23049eb9f7e34615ed37a9c476fdef5bb096ae8b4764ff5822d17f14b3c17660

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240705-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240705-py3-none-any.whl
Algorithm Hash digest
SHA256 10e7d3ae7b3d680ff1c76034c52ebed7dbeac3083b7356272211c22d5fff2b18
MD5 9196c1f0a0625c2924c06d23d55fa9dd
BLAKE2b-256 baf0cdf95f3b1a00e1870688f92d6e39c980a7a107eb906b214bbbe029d34215

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page