Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240706.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240706-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240706.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240706.tar.gz
Algorithm Hash digest
SHA256 02564a93cdc46f1e4c6e3da3ac23e23be18e9564cf1a12883b20cef539abf947
MD5 4728c24236e3aba8c8af7e7294fa3738
BLAKE2b-256 f8cadd894a3ff756ba4e04fc58eb75817ccaba896a21ec7a31ea3ee3a134dec9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240706-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240706-py3-none-any.whl
Algorithm Hash digest
SHA256 9148a0742f1e8680031ee9444ff97ef206f8ef65bca64aff1f28a80582fe41d3
MD5 c6c79c16e4e0d830a22041900148d258
BLAKE2b-256 b1897750a12828a09fc28ab68bc57d623ec644e248d4d096cf1e31efd8c8619d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page