Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240707.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240707-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240707.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240707.tar.gz
Algorithm Hash digest
SHA256 469427d84489a85354bc2039a51fecd2c9d2dae4d84595f371c8ed053224f3db
MD5 674703140bbf80c391a9fd96255219be
BLAKE2b-256 6eb00ab2b27f588e732ffcf2c87d419cfdc225ac27909063c738bcf4d6b303a8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240707-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240707-py3-none-any.whl
Algorithm Hash digest
SHA256 518f22b7a1c051f27b22622c2aec2eaf4973036c7371bf4bf650603d64e39408
MD5 87c67ebb609b16c0fc16772fc8112dd5
BLAKE2b-256 2ff7fa29ca27e1325082143b98399927694ce04a1150580988cb3eda73ebeb94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page