Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240708.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240708-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240708.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240708.tar.gz
Algorithm Hash digest
SHA256 e7fa467801f89437fc6e3709033356251389f60b272973cb83c5460b0e86508e
MD5 5481e277bea73b00c724dd08cc92ae06
BLAKE2b-256 fb04c18d6de0a217f8f388bfb849b3b8591f7dc7175c6c7ebc7f0428038a6ba1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240708-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240708-py3-none-any.whl
Algorithm Hash digest
SHA256 9007ec93fd751acda9e9d8c8bf11652f388fef4c5e38eb1f7707913a9d7a34c3
MD5 d9a48077cd224b8cfc8bf6de3046ab19
BLAKE2b-256 d78bcede0fee111282f30321dcab6799c92fdee5598a072a8a9d73c8693e5e07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page