Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240709.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240709-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240709.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240709.tar.gz
Algorithm Hash digest
SHA256 8116d8799d62e8073885e1d92814117be3321faa33ab82eb61eb54270ce5e30e
MD5 5ce916c296f6f3fa137aa5c3ab2f3515
BLAKE2b-256 cdbf3d4783055b66f11dfe7cff637d3ffd1e313738d89e5bf01bb36194d0f339

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240709-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240709-py3-none-any.whl
Algorithm Hash digest
SHA256 8f2ea8261c601202f7623c14c61e2b8946df9c02a2be94d9a60232a791a9ec02
MD5 4bccd2222e6ce1efbe6f6e6663aa9174
BLAKE2b-256 20f11d5c1676318be0ff02482e4bd9eacac6467456b2dc7e160497f2125f8802

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page