Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240711.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240711-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240711.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240711.tar.gz
Algorithm Hash digest
SHA256 847cbbc12c2751b4316a93ac05103f4f761952c3f5c4886a800e7c1c4060797f
MD5 52fa0a0b8914d96cc318e66b248fae7d
BLAKE2b-256 6448713007dca6af793061f993a591a791b402d091a19c9c6bc3588f85f80361

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240711-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240711-py3-none-any.whl
Algorithm Hash digest
SHA256 8f3c7184d910f531cb5ac9f8a08797327ea193e692941a9d0e0932a022583e06
MD5 4dca2795c036871049a9e44d31dfe2a0
BLAKE2b-256 68bbba353a3d4fe848fd8cf6b070493173784523315b4c307dd59869f7393f92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page