Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240712.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240712-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240712.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240712.tar.gz
Algorithm Hash digest
SHA256 618fad6d20eb41db75be6ec095f8b41bd7f44036e4048861385a1b83348760b0
MD5 12dc04331cba23a4de8bb50441f11777
BLAKE2b-256 9668a83a2c20d5b4eb86d376c4eae1179522021146bf390ef268630402f7ae64

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240712-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240712-py3-none-any.whl
Algorithm Hash digest
SHA256 403632170b1b61be7bb52a9a44d8ff1d1903310cdeaa5a83510b14a56710946b
MD5 1e48591e7633c85cc1674f98b246a89e
BLAKE2b-256 c404cf2ad70699ce0eafab7cb045fb556228b342c8f4bc0f95a267f23c153576

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page