Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240713.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240713-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240713.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240713.tar.gz
Algorithm Hash digest
SHA256 8553b0198b412e49c021dd85e20d588d6804b0e5440d58b41bf1532368e15cff
MD5 560a744f66e3284c115056026084eb36
BLAKE2b-256 485ed2757cbebbaa0b123ec2894c4341751382176a58c4d35278c3c1eba72544

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240713-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240713-py3-none-any.whl
Algorithm Hash digest
SHA256 bb2857d0b1150cab4816a019ec0eabcdf95eb4a7a777d644a1c1bcc52d4e73b6
MD5 4143b9798a401dc75b6fc76b634ebfca
BLAKE2b-256 f5a518b357738b456aa8b876bc0df0fca4b0bf14501920b9287b78ce7829518c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page