Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240714.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240714-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240714.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240714.tar.gz
Algorithm Hash digest
SHA256 e57a79cc8dee687410c91206228e1e6c2601e69268cee2dba74e74c43c76fe34
MD5 5a562f1edeb7fe9a2d21fd4db3b2e500
BLAKE2b-256 dee17d6761b446a95c2d7b33f3e7f426dcf2eefc98938b143da19de5ac7dc03a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240714-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240714-py3-none-any.whl
Algorithm Hash digest
SHA256 91825fc98006ae61b88144997c0f77489b66219aa8fdf788d85a4366d4f9f6bc
MD5 58c58614b1080f711d59552a0321cb94
BLAKE2b-256 754afd7effe8fd18b00425abe907453f311282b2651cbe6bba26089b561241e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page