Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240715.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240715-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240715.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240715.tar.gz
Algorithm Hash digest
SHA256 52412d999b6f062c5d75bb7579a0772bc86b97fed192e08edc6027a27a59e4d1
MD5 98a34a3064025ee4e8ed03920862d280
BLAKE2b-256 0236f80068e6fd1d824a58845cf5798546c2c32065be464d6edefd213b9688ea

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240715-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240715-py3-none-any.whl
Algorithm Hash digest
SHA256 c1a11f6ff75f2bca83743aa91bcfbecf0b41a3d39435ad4cb936a21addec8ea9
MD5 7dda9432ab34922f905ad6568af9374e
BLAKE2b-256 5178add55b8cb35e789ef6105cb84f2c012f7ae29302b71a00a64f58b7268e38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page