Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240716.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240716-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240716.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240716.tar.gz
Algorithm Hash digest
SHA256 4fe84333b6b34a8c08f2bcebd61bf542383e3a731b49c47f5c9798ca23691674
MD5 0cbafc3f17b286d6d22285f49995f68b
BLAKE2b-256 c333bd557dc0bf612d1951750ce29682ccbefa6357e5571011a74387c5474563

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240716-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240716-py3-none-any.whl
Algorithm Hash digest
SHA256 f51ca2b683521b20e951304302445b42967063fecb1175db3d6bfea841298147
MD5 1af4adf5df95b386b845ccbb01898ff6
BLAKE2b-256 bb8124a2b4a833611bbda509e53b19f5ff233f67fed96bdd190a1d647d9bacda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page