Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240717.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240717-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240717.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240717.tar.gz
Algorithm Hash digest
SHA256 ef90dca4cf3672ef43339aee7a6493da87fb4841169bf7b3bc2cfcb58ced2e34
MD5 a2374b2fe621eac757cee14051ec07f3
BLAKE2b-256 d048b91b3a4fd2ef8a010160605f576d64610c9c907de8831610d8e0ed0a2fb9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240717-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240717-py3-none-any.whl
Algorithm Hash digest
SHA256 8ff04127528b6dcd82c106dd23eece5274a2da445c3644056453e3cd12a6f5a7
MD5 fc061457aebcd6dae5718bf52eb715c3
BLAKE2b-256 34b0c5330e66b3b33f423a84ce2fc120ac9105ec4e181f13832c67c52bd27668

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page