Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240718.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240718-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240718.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240718.tar.gz
Algorithm Hash digest
SHA256 cde28bdb94ce57b23a7b52b2771c3273ccc7b3ebb5de8b1c2ee40df70ddec132
MD5 6dcdb9175d768b11af60173994cc2e4d
BLAKE2b-256 70a046f94b0e972e3e725303430532a8b8a4ba264ecbc72dcf7c706a88ad6c6f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240718-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240718-py3-none-any.whl
Algorithm Hash digest
SHA256 1e0fcff6f29d5e89ba347a3d6628f17e5add45dc36090be079fbcd439b2c13b8
MD5 d37564467892d83703c87531d18eb228
BLAKE2b-256 4b18e85b14f225457df488beb95c9f1f6c5039614644ad282266f81e8c73ec51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page