Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240719.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240719-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240719.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240719.tar.gz
Algorithm Hash digest
SHA256 46f45b0940ca0656be268b5e187cb0e7d1595a7a2124dc58d51104003ec7b3f1
MD5 9841795e33b59da1c1aae96db7365525
BLAKE2b-256 a68f8a67cad4cf950de7a653f2d133b57c24a5aa2bba6dca9aafeb3ced176a7c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240719-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240719-py3-none-any.whl
Algorithm Hash digest
SHA256 94a84e0256e69dbd0d4af88150f6d541365c44954ab437134ed35640ab3738f2
MD5 fc271e85a718466df89cb4724445648d
BLAKE2b-256 bbfecd9ac4de4057689d7b02d7dd1b54dff1c5818c3a2f4effc43470fc418b2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page