Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240720.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240720-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240720.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240720.tar.gz
Algorithm Hash digest
SHA256 5451237dedfed0d0f5d38986a0ec28f4030347c31b36b25cbff873cbad46db2a
MD5 e09893adea33ccca5ade1c14971c197d
BLAKE2b-256 801f274fe724d62ce50544ef38854b7821acc1b0892d0d2f236be17a433d97b4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240720-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240720-py3-none-any.whl
Algorithm Hash digest
SHA256 99346253a81733e257ca0568eed97125a1e30e11d2f5cf77aed1744e6a571cc5
MD5 a413101d6ebe5b240e31ea7d2591f398
BLAKE2b-256 c86363f6538b99afdedad6cd0a58c2f7383972969ed64fea3b9127276113f5d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page