Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240721.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240721-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240721.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240721.tar.gz
Algorithm Hash digest
SHA256 08a12bff31c31afbaf337ac4196fa5e65477416d8047f9908f657458194edf95
MD5 58e3cbcde50fedea4f992d0d1727c324
BLAKE2b-256 2ea8b6903ee8be9632aa4f6bd31e5f27f1f5044da81d16724ee2912bd31cbcdd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240721-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240721-py3-none-any.whl
Algorithm Hash digest
SHA256 6807f0931035898cc7c9a9c8ffcdd365ca74f487a07093405e54273bcbab1067
MD5 96a22495ac0f6ea3cd0f4c82cc1d37c3
BLAKE2b-256 8e453a41710a83e64b2a75562d0cdc233b89dd1754a4a3cdd0d9fcee9bf114d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page