Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240722.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240722-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240722.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240722.tar.gz
Algorithm Hash digest
SHA256 04676f9b8b8abaf002dfe0996d94063cee1bc4935d6fd4cccbbe47cec7f12052
MD5 a593308e5c831625c72bcfed8026eef1
BLAKE2b-256 fae064790d6aa02e74f42223abe3cfc12b7eada4b0961638ca642aeeaa4b14d0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240722-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240722-py3-none-any.whl
Algorithm Hash digest
SHA256 c1ad7c40f54d1079f2168a30a0a668b948036da63be632729d1d7006e33ba585
MD5 815f275bd3128420ca4f6d86a968a2d2
BLAKE2b-256 1a5c35682b3db87a3361199eac2bb5cb34ebbef657fd2a3b869a529d9f508eeb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page