Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240723.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240723-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240723.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240723.tar.gz
Algorithm Hash digest
SHA256 ba2a447147dbf786ee9b51bcf6acbffd3b3c9303b9c75de37b0211e2b2d8f8fb
MD5 ca2bf70d4355e82672d4026e2b1607bd
BLAKE2b-256 dce1b648c4fe5efcfea792b60d7acbf8fef33524857c870de6c238c439a54a91

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240723-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240723-py3-none-any.whl
Algorithm Hash digest
SHA256 4ce916073150ba1b42ea1228c0cc7f4f668bb9477c073829b01e370afc6bf6a1
MD5 cf1c7cd384e6914d18af454d86aa4cb0
BLAKE2b-256 f4dfe21887df61194f8bd9254ce72d86f788d8a456c3785ad19743d936e0650f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page