Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240724.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240724-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240724.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240724.tar.gz
Algorithm Hash digest
SHA256 75e09ac5c71e718d05b84b94036b82247e35ed2fb83b7da4da2e4c9ba819c7b9
MD5 2c820689c082918b02c54d043abcbbbe
BLAKE2b-256 9af15db917833e143ae6ca125fe0edd8ef6f9d9a3964d0dcf2b97a607d439314

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240724-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240724-py3-none-any.whl
Algorithm Hash digest
SHA256 84b3b6e8b1eb8f836be7afb074669a688c4d3de6e2437a824a0ba2c1ab70922a
MD5 fbc23f44c95cd044ee5c6c6570a56ec1
BLAKE2b-256 7bb05f3d56ff6673c190a7c33ea042978a339002cdefeb8803645d76cfba084a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page