Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240725.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240725-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240725.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240725.tar.gz
Algorithm Hash digest
SHA256 6c26e257005db64be6262e320b248e481164627e583ea2ad1c25f3ef02fc4f60
MD5 b1ac5bb276f689b1c419f9efc46f22be
BLAKE2b-256 460ea9176ba7727408b7a4ec83a1ec270d895da3b093749f74071f1e2ebcd8c3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240725-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240725-py3-none-any.whl
Algorithm Hash digest
SHA256 54f56aa57a942a1422836504f6fbc647cc637c29ef7fd94773af645252879903
MD5 4cc1eb35fb00ee0dabb851bfc9642e9f
BLAKE2b-256 e0d79799da508537d626fa81cbc4b3362fc05dbd43cc0fb1a721d72bd429b587

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page