Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240726.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240726-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240726.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240726.tar.gz
Algorithm Hash digest
SHA256 ce0d6223fbbd337da45c6cf09c71cb92ccc6e00c9adfafdd2de4c87160c0c1c5
MD5 5622d6537c14fd5e1e822503b8b5fd99
BLAKE2b-256 5f3ba9c711b993918c0378c84ea0eb30f26c8ed02b57bcbe36cfcb3e841b9bb5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240726-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240726-py3-none-any.whl
Algorithm Hash digest
SHA256 25f49701027cf0fa132f315e61a50385cfcf6800aaf9500a8ae8452fc4bf2ef1
MD5 66bfee50631e1cdb48c2a4938cc244ca
BLAKE2b-256 2312877cd37210e621e168f76cd381dc3390e08d4a89f660e143fb0b703f0b8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page