Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240727.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240727-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240727.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240727.tar.gz
Algorithm Hash digest
SHA256 8ac761a2e0cb7928b28fc0408c321f81489008f2056f49f1f7685261be1dc70c
MD5 bdb08fc50b125de857d06a8e9294fef6
BLAKE2b-256 cc6c31bf5f37bd57851d85f78e8c8121b91c72f64e42e71cb20293e743e6b19c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240727-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240727-py3-none-any.whl
Algorithm Hash digest
SHA256 d63204f5802d76eabcdd8315a8235497d4be232129b33f8f9cc7b7d8dce7dbd1
MD5 e10f7d3be5a40c4c8e264a69f9e1003f
BLAKE2b-256 868a151e37631fe1da6205e858868fdb92948bc96dbf23b690694ea38dd1dc5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page