Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240728.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240728-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240728.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240728.tar.gz
Algorithm Hash digest
SHA256 3b7bf691eca0ef01493aba8f5d10084f0c9f841fb35c17605ecf2f2a2e86c19b
MD5 451a78f42fdc44470cf49b4863e12fac
BLAKE2b-256 4c0463cce059b16e01b1e457436a630e2f1e48462a94cd1b6fe8eedb4f0ae5d5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240728-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240728-py3-none-any.whl
Algorithm Hash digest
SHA256 f75bf10dfdcb35fa78ebe3b170d3ee688bcf521824302ce2926c5dd638fcaa2e
MD5 0db359cd14a573ac4486e4b5980468cc
BLAKE2b-256 bbe696ee582d6c6c71122fed6d30bdd75036b05e6e763c610ecbfd0d4e881be8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page