Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240730.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240730-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240730.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240730.tar.gz
Algorithm Hash digest
SHA256 2dc002725ac460df6ef73ee98961bbe1f4d601c83453eafd1a9bca4c79ba57bf
MD5 40d95494e41c1aabf0b2ebfd9cba90e4
BLAKE2b-256 b3041a9de385a94466a8fce9b9f5b0d9235a199641be39ee6a0478b5e46720a5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240730-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240730-py3-none-any.whl
Algorithm Hash digest
SHA256 234e0fc0f319aa665df54395c04b28806d427a13647c1dbe309ec650d14dff47
MD5 f289f50960d57b27700bd697a4539349
BLAKE2b-256 8cd3ca15fc9035e67602d3627bf29df6d6f9e4688e9fdcc85795ad13ed6f01da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page