Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240731.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240731-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240731.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240731.tar.gz
Algorithm Hash digest
SHA256 ea41a3dc8a61f0f59b2796dc00cade59734ed3285b3d3b2ef5de97a54b0982eb
MD5 0da6a5ae34fb7709c5ce08de1f85a5aa
BLAKE2b-256 30ae9b5fe43f22614459955e516fa4e775c896330412384244bd88a2c3e26ab6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240731-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240731-py3-none-any.whl
Algorithm Hash digest
SHA256 23fbd2c5e97d1e1722357bee527be7cad550a1d39a9fccd2ee44e7c0bd87dca1
MD5 5ab2389d08ed60bf6398205518aff79b
BLAKE2b-256 ca4ff9ddaff9737e63074c30af0a67eb34d27014ddacd250854363cbf688774f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page