Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240801.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240801-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240801.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240801.tar.gz
Algorithm Hash digest
SHA256 a2ef15644b7c5810670f8a2d2291c81325be4736a97bac612142436d8b428109
MD5 c584e1130b6a81be998663ea6882dd44
BLAKE2b-256 361a6efd79b2eb066127fe81457d6e8f1aae0f233e80e0a5f87a77140b0a891f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240801-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240801-py3-none-any.whl
Algorithm Hash digest
SHA256 4b26e2995079eb9eb124da98574c7bd87b43a49d1b58ca89ec25468f556782b8
MD5 8f6ca36a20083526e0b416a6f6f87169
BLAKE2b-256 4490507cc5acdec94a929b4dc69e0aee6ae54215b4b07d4e4e66865a0ff11452

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page