Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240802.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240802-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240802.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240802.tar.gz
Algorithm Hash digest
SHA256 299bc67c33ce564b1f32410d0648c61344ec26fa8182dc05b3715b322259a714
MD5 bf003bb77f36291cc5b7ff1b583ee19f
BLAKE2b-256 578e691fc77823f1ca58d41b7d8f58db0e94ee8c2cee899b0fa20b4d620cbe25

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240802-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240802-py3-none-any.whl
Algorithm Hash digest
SHA256 41d3f44ebd728debfdaeb3337fc2cc33f41f7f554fb28226d63140c8beb548f2
MD5 ae3921644acead94d12d3a5e11361c59
BLAKE2b-256 9650c0effebdd20cb87c982a577295b5e07c9a539c3a200c253a2329fea1c0b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page