Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240803.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240803-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240803.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240803.tar.gz
Algorithm Hash digest
SHA256 10b37fd025f978f7cb64a7d171a15a792226f5b6d0c64ba7e8d593128b8b632a
MD5 d74326dd91adac08db58e53e04e8a0ef
BLAKE2b-256 b4870a50a465852d84bab1f9e73c7cfdc59c0272b55bcb38e9d4f22717cb7bbf

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240803-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240803-py3-none-any.whl
Algorithm Hash digest
SHA256 cf4a16c4cee893dc37de152db96e4365010b920fe7b32f5a1aafc307ffe942cc
MD5 0ef6c9d657c1780a7a79e78d82d44667
BLAKE2b-256 e9192c161f2a2041c9af9b19230a167811ae28ce4595143b843ec54941d22d48

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page