Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240804.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240804-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240804.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240804.tar.gz
Algorithm Hash digest
SHA256 42108254494769c13bf8cb4b96ac24cd5694251a985a4d9bb899b981786b58b9
MD5 959be9c1992090ae89bd95580f0de6ef
BLAKE2b-256 1fefc7889cd9a300c0a82f8729dc804ecdc5b55237b9475f454f38685bfd44d0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240804-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240804-py3-none-any.whl
Algorithm Hash digest
SHA256 e3c9b744e4a70e9d2ad2d1725db11be461e22bb3f474fdacfbce523b5d1128b6
MD5 45b635686b74451c34b3e4d76820f9c9
BLAKE2b-256 3ed6be5a4cfa6a1f736b7f9b7d72ea1f2244912c1cb5abd6072745517a238994

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page