Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240805.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240805-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240805.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240805.tar.gz
Algorithm Hash digest
SHA256 67001cf81cb91ef26c7718455eb37f2e89b25df3d5b202bc749e6a025b9fbb9c
MD5 9352249447137576208bb61e474eff1f
BLAKE2b-256 4a0168f7bedb360e573c83fdea8c3b0d9ae750a4a3ada121590b03b6a571bb41

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240805-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240805-py3-none-any.whl
Algorithm Hash digest
SHA256 9d69571d8e7f55a3716d567bd96c8b21b09dd453acb63a7c42e68b0052e9f885
MD5 6ce9971f9b545a2c737f932015092419
BLAKE2b-256 105be337450ccfbe9ba9deb044d0e089cdd6b1d325e6445a014a4a14902974c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page