Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240806.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240806-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240806.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240806.tar.gz
Algorithm Hash digest
SHA256 51204c9951d104b0c7fd6c4f74b73f7e0b1a585eefb30e908f64a55acf3cd38a
MD5 8f13d55e0b3a35d1ab338ce23a0ee59e
BLAKE2b-256 03749d2d2184dd45dc0c1f24019c8827bebc055f5b4aec88d5900e64cb433c06

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240806-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240806-py3-none-any.whl
Algorithm Hash digest
SHA256 cb2957a19c3afb2aa5b8f7096a165b92f8dff01b1e73f18bcc67b5c858b73279
MD5 a7fe70b716e4e7fd30582dcb7cdba18d
BLAKE2b-256 2d463328a83c8eba111c014b2ce102baab1fabeb2e3a714f30551c4a0ec45f0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page