Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240808.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240808-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240808.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240808.tar.gz
Algorithm Hash digest
SHA256 561a28eefa86bef4e1bb29eac360fccbdde733224a32e0406250507a034872fc
MD5 fbc3efae6091ecf722f885925ace8202
BLAKE2b-256 09c1a78678287b70b5eb877b1657d8c7187c7c3cce5c0b10d68fdc432419da37

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240808-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240808-py3-none-any.whl
Algorithm Hash digest
SHA256 e3fac5cdf15c9595747fe0e4f4a01be7b044edce7823ad43c8e25832187c84d6
MD5 345910983574917b485f5ab5f15b3734
BLAKE2b-256 f9831a0f6608d77785b0bfe3c194714e295509fafc1deaaa00f1e3bfab20c568

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page