Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240809.tar.gz (65.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240809-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240809.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240809.tar.gz
Algorithm Hash digest
SHA256 a87823b7e33ba3757823d2b46e1691ef14963a666f99a4c87da8673b22a73d52
MD5 826b27c3a37bb96e72dce59fc9f6d129
BLAKE2b-256 2a956f918ac9c71a70427e8b2bf46998a0da74d862505ea9374fb684ec9ae20c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240809-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240809-py3-none-any.whl
Algorithm Hash digest
SHA256 0c05496423354c0eaf3330323b5fa8d7b1a18888a032f0807bd5ccd9bcd5b2ee
MD5 fb6e2aa41a1e25dcd9023c73440d9b86
BLAKE2b-256 54623e8ed5b317cdb20424e5f7b7cbef5a22a74b4e3d0b4a8d170308dbb8bfe7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page