Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240810.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240810-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240810.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240810.tar.gz
Algorithm Hash digest
SHA256 10f9b0487c24a87aaaa4e3d5643e1c50f5299e69f689b65aece7c21bda9fe41a
MD5 1ff338ba7c44740ebdf7c042a584bac7
BLAKE2b-256 8ebcb3d405b68a1dd5ce5c0d5c496e24d62e9a607b7310316fa6ef5b28fe0a67

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240810-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240810-py3-none-any.whl
Algorithm Hash digest
SHA256 56b489e89036aac24d529c966f02f579d68ecd526a8ce356e7bf57bfc716ae48
MD5 8b120d942460910b8edca237f2660de6
BLAKE2b-256 ac46863d4c86e177d9902d50a39b933dfdcc0a5ff4f2f124048af94a1ebb29ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page