Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240811.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240811-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240811.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240811.tar.gz
Algorithm Hash digest
SHA256 17b84366cb4dd4d4e7491cb9de529c2cef6d6910d2566e4626a0bb0e321f099d
MD5 ce30f6d29453bcc3f4859904caec48c6
BLAKE2b-256 c5ee77bc80766864bde7552cc2cd2a158296958072f8cc24a2a5cc4aa24998c6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240811-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240811-py3-none-any.whl
Algorithm Hash digest
SHA256 30f0046d3c59a5912849dfcbc7645ee76c916f0061665a33f3f2bcdd21fa5220
MD5 0cba2b09abd3d1dd6c8fa9a7f3ca5f50
BLAKE2b-256 463d0a9bcb2073002e15b9fc0f57247cb4b0158302f0f817926635d968611d8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page