Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240812.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240812-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240812.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240812.tar.gz
Algorithm Hash digest
SHA256 f12e78bd920b34c253d022991177153c4722d354c064fcb25a246511752cf9c6
MD5 a619ea4166a75af010a5df3fd3333a82
BLAKE2b-256 1565be8789cbf41edd0623823620448119c435e55a9930e0f810d7690f28f717

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240812-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240812-py3-none-any.whl
Algorithm Hash digest
SHA256 3f6d4149d695a8ef6ad3853220a27848e8d40837804d6e1f8de51b869443519e
MD5 a146a99fca44fd4ca33476c7579e14ad
BLAKE2b-256 658dbf852715f2bfbf45ba4d2c6fab1205750027b94bfb045258e9b34474fcba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page