Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240813.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240813-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240813.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240813.tar.gz
Algorithm Hash digest
SHA256 a90b123302a41047d9d727d6d3426869205b72342b702e82827986d5d4dc6eb4
MD5 dea3f91fca8979db9a74000117a0fa67
BLAKE2b-256 efa8afa955493cbd77ff3dbe2e95a18c5845d82c193ff82e63600f6c60b3c6f5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240813-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240813-py3-none-any.whl
Algorithm Hash digest
SHA256 a273346c55f895b6917ef76b5beb140a274bcfbd79bb83a61d9fa420de6b8a86
MD5 88490114ea5bc433eb53d0e994a3db94
BLAKE2b-256 425f308926ac72b95410178061bd65051e7b7c17e007ca95ef023a98a0e0e7f4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page